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Summary 

Minimum Entropy Deconvolution (MED) has been recently introduced to the machine condition 

monitoring field to enhance fault detection in rolling element bearings and gears. MED proved to 

be an excellent aid to the extraction of these impulses and diagnosing their origin, i.e. the defective 

component of the bearing. In this paper, MED was applied for fault detection and diagnosis in 

rolling element bearings in wind turbines.  

MED parameter selection as well as its combination with pre-whitening is discussed. Two main 

cases are presented to illustrate the benefits of the MED technique. The first was taken from a fan 

bladed test rig. The second case was taken from a wind turbine with an inner race fault. The usage 

of the MED technique has shown a strong enhancement for both fault detection and diagnosis. The 

paper contributes to the knowledge of fault detection of rolling elements bearings through 

providing an insight into the usage of MED in rolling element bearings diagnostic by providing a 

guide for the user to select optimum parameters for the MED filter and illustrating these on new 

interesting cases both from a lab environment and an actual case.  

 

Keywords: rolling bearing, fault detection, Minimum Entropy Deconvolution (MED), wind turbine. 
 

POPRAWA WYKRYWANIA USZKODZE  !O"YSK TOCZNYCH W TURBINACH 

WIATROWYCH PRZY U"YCIU METODY MINIMUM ENTROPY DECONVOLUTION 

 
Streszczenie

Metoda Minimum Etropy Deconvolution (MED) zosta#a niedawno wprowadzona do 

diagnostyki w celu poprawy wykrywania uszkodze$ #o%ysk tocznych i przek#adni. MED okaza#a 

si& bardzo pomocna w ekstrakcji impulsów pochodz'cych od tych uszkodze$ i okre(lania miejsca 

ich pochodzenia (np. uszkodzonego elementu #o%yska). W niniejszym artykule MED zastosowano 

do wykrywania uszkodze$ #o%ysk tocznych w turbinach wiatrowych. 

W artykule opisano zagadnienie selekcji parametrów metody MED oraz metody „wybielania 

sygna#u” (ang. pre-whitening). Korzy(ci p#yn'ce z zastosowania metody przedstawiono na dwóch 

przypadkach. Pierwszym jest stanowisko laboratoryjne, a drugim – turbina wiatrowa z uszkodzon' 
bie%ni' wewn&trzn' #o%yska generatora. Zastosowanie metody MED pozwoli#o na znacz'c' 
popraw& zarówno wykrycia, jak i lokalizacji uszkodzenia. Najistotniejszymi cz&(ciami niniejszego 

artyku#u s': opis metody MED, wskazówki dotycz'ce optymalnego dostrojenia metody oraz 

interesuj'ce przypadki zarówno laboratoryjne, jak i rzeczywiste. 

 

S#owa kluczowe: #o%ysko toczne, wykrywanie uszkodze$, Minimum Entropy Deconvolution (MED),  

turbina wiatrowa. 

 

1. INTRODUCTION 

 

Rolling element bearings (REBs) are components, 

which transfer the load through elements in rolling 

contact. The REB consists of: inner race, outer race, 

balls (or in general, rolling elements) and a cage, 

which holds the rolling elements in a given relative 

position. Rolling element bearings are key 

components in modern machinery. Detection of 

their faults is very important, as it prevents any 

further deterioration to other components which 

may lead to catastrophic failure. One of the most 

important and more and more popular machines 

using REBs are wind turbines. 

Figure 1 shows the gearbox and the main bearing of 

a 1.5 MW turbine. The typical wind turbine 

drivetrain consists of a main shaft, planetary 

gearbox, two stage parallel gearbox and a 

generator. Depending on the location in a wind 

turbine drivetrain, the replacement of a bearing can 

cost between 2500 to 32000 EUR, while the 

replacement of a gearbox may cost anything 
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between 75000 to 240000 EUR [1]. These 

operations depend very much on the accessibility to 

the wind turbine, which in turn depends on weather 

conditions, especially wind speed. This aspect is 

even more important for the offshore wind parks. 

Bearing spalls, subject to the machine speed and 

load, usually propagate slowly, thus giving the 

analyst enough time for monitoring and 

maintenance scheduling before any catastrophic 

failure. Therefore, a huge body of research in the 

area of bearing diagnostics concentrated on the 

early detection of the bearing faults to enable 

providing enough lead time for maintenance 

purposes [2]. The knowledge about the technical 

status of the REB and its fault development and 

propagation are being employed to develop a 

reliable prediction of the remaining useful life of 

the rolling elements bearings in what is known as 

bearing prognostics [3], which is becoming an 

important aspect of the new trend in monitoring the 

health of rotating machines. Cempel proposed a set 

of methods for machinery components lifetime 

prediction and calculation of limit values [4]. 

As has been shown by many authors [e.g. 5, 6], the 

envelope spectrum is a very efficient diagnostic 

tool for REB faults, as the information about the 

fault is extracted from the spacing between 

impulses and not by the excited frequencies. The 

process of obtaining the envelope spectrum is often 

referred to as the signal demodulation. There are 

several methods to properly select the frequency 

band to perform the demodulation. An informative 

source for rolling element bearing diagnostics can 

be recalled in [2]. 

 

 
 

Fig. 1. The view of the 1.5 MW wind turbine 

gearbox (front) and the main bearing (behind). 

 

To illustrate the content of a measured vibration 

signal with a defective rolling element bearing, a 

simple model of the generation process is presented 

in figure 2. The symbol “*h” represents the 

convolution of the combined vibration signal 

(deterministic signals, bearing defective signal and 

noise) with the transfer path between the vibration 

source and the sensor location. In reality, the 

mechanism is far more complex, as it involves a 

number of vibration sources which may be added or 

convolved in rather different forms.  

For a clear diagnosis of the bearing fault a number 

of techniques have bee proposed to separate 

deterministic components from bearing component. 

techniques such as discrete random separation 

(DRS) [7, 8], self adaptive noise cancellation 

(SANC) [6] and  time synchronous averaging 

(TSA) [9], which benefits from the slippage 

phenomena has been proposed with good results. 

This technique was applied to wind turbines 

diagnostics by Barszcz [10]. A number of papers 

proposed methods to improve the signal to noise 

ratio of the REB fault component, by selecting a 

frequency range in which the energy of the signal 

components is relatively stronger. Different criteria 

for so called optimum frequency band (OFB) were 

proposed. A very successful approach (kurtogram), 

based on maximizing the kurtosis of the band 

filtered signal was proposed by Antoni and Randall 

[11]. Recently, Barszcz and Jab#o$ski [12] 

proposed the criterion of kurtosis of the envelope 

spectrum (protrugram), which is more robust to 

random impulsive impacts. 

Another problem with detection of small impulses 

induced by REB faults is the transfer path between 

the faulty component (e.g. inner race) and the 

vibration sensor. Impacts, which are initially sharp 

after travelling the distance between the bearing 

and the sensor may be very distorted. The method 

was originally proposed by Sawalhi et al [13] with 

the application to a test rig. This paper provides a 

means for removing the effect of the transfer path 

*h through inverse filtration. The aim is to design 

an inverse filter to remove/minimize the effect of 

the transfer path filter. The base to optimize this 

filter is to minimize the entropy of the signal, or in 

other words to maximize the impulsiveness 

(kurtosis) of the signal. This filter will then be used 

to deconvolve (as opposed to convolve) the signal, 

thus recovering the defective bearing fault signal 

(impulses) in a rather clear way. The filter used to 

do so is refereed to as minimum entropy 

deconvolution (MED). 
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Fig. 2. Model of the generation of the vibration signal from a machine with gears and bearings. 

 

2. MINIMUM ENTROPY DECONVOLUTION 

TECHNIQUE

 

The Minimum Entropy Deconvolution 

technique (MED) is a type of system identification 

method that was originally proposed by Wiggins 

[14]. Its main original use was to aid the extraction 

of reflectivity information in seismic data in order 

to identify and locate layers of subterranean 

minerals. MED has shown its effectiveness in 

deconvolving the impulse excitations from a 

mixture of response signals [15, 16]. In the machine 

condition monitoring field, it was used initially by 

Endo and Randall [17] to enhance the impulses 

arising from spalls and cracks in gears. It was then 

adopted by Sawalhi et al. [13] to enhance the 

detection of spalls in rolling element bearings in 

high speed machines.  

Figure 3 illustrates the deconvolution process 

involved in the MED filtering when used to 

enhance the detection of bearing faults. In order to 

gain the full benefit from using the MED technique 

for rolling element bearings, it is recommended that 

the signal is first order tracked. After the order 

tracking the synchronously averaged part 

(deterministic component) should be removed. 

Another recommended pre-processing step is to 

pre-whiten [13] the residual signal (i.e. total signal 

minus the synchronous average part). Pre-whitening 

can be achieved by using an autoregressive model 

(AR) [18]. As the main aim is to have a relatively 

flat spectrum, there is not usually a great emphasis 

on the selection of the order of the AR process. 

The proposed algorithm has been implemented 

in this study by using the Objective Function 

Method (OFM) given in [19]. This method is an 

iterative optimization process, which is designed to 

maximize the kurtosis of the MED output (thus 

minimizing the entropy). The OFM achieves this by 

changing the values of the coefficients in the MED 

filter. The optimization process finishes when the 

values of the coefficients converge within the 

specified tolerance. 
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Fig. 3. The proposed inverse filtering (deconvolution) process to enhance the detection of bearing faults using 

the MED technique 

 
3. CASE STUDY ON A WIND TURBINE REB 

 

MED has been attempted on a signal taken from 

a wind turbine with extended inner race spalls. The 

turbine was of the GE 1.5sl type from one of 

German wind parks. This is a 1500 kW turbine with 

the doubly fed generator and pitch control [20]. The 

turbine has had a bearing fault on the generator 

shaft in its inner race as seen in figure 4. 

The raw acceleration time domain signal, the 

results of the different processing stages, and their 

corresponding envelope spectra and selection 

criteria are shown in figures 5 and 6 and 7 

respectively. 

 
Fig. 4. Spalled inner race of a wind turbine 
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Fig. 5. vibration signals (acceleration) for the extended inner race fault (a) raw measured signal (b) After the 

removal of synchronous average (c) signal b Pre-whitened (d)  signal c after using the MED 

As can bee seen from figure 5, the application 

of the MED has significantly increased the kurtosis 

of the vibration signal. While the kurtosis of the 

raw signal was just 4.03, it reached 21.88 after 

application of the obtained inverse filter. These 

results can be also clearly observed in figure 6, 

which presents the envelope spectra of signals from 

the figure 5. In the envelope spectra it is observed 

that MED not only causes the increased clarity of 

the BPFI harmonics, but also discloses the presence 

of strong modulation by the rotational speed of the 

shaft. The harmonic spacing in figure 6 equals 

283.87 Hz, which was found equal to the repetition 

period of the BPFI (ball pass frequency inner ring). 

The sidebands were spaced at 30.11 Hz, which is 

the rotational speed of the generator shaft during 

the measurement session. 

Finally the dependency between AR and MED 

algorithms parameters were plotted (see figure 7). 

The trend observed earlier in the experimental 

research can be clearly seen here. A low AR order 

model has been used (AR (1)) and a filter length of 

4096 was used (although 1024 or 2048 would also 

give enough good results). 
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Fig. 6. Envelope spectra (band pass from 1000 to 10000 Hz): (a) raw (b) residual after subtracting the 

synchronous average (c) signal b pre-whitened (d) the MED result
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Fig. 7. Wind turbine data: AR and MED parameter selection (a) AR model order selection based on maximizing 

the kurtosis (B) MED filter length selection based on the kurtosis of the filtered signal  

 
4. SUMMARY AND CONCLUSIONS 

 

This paper presents further development of the 

minimum entropy deconvolution (MED) method to 

aid extracting faults in rolling element bearings. 

The MED technique was applied to signals with 

defective bearings taken from an experimental test 

rig and a wind turbine. The synchronously averaged 

signal (containing deterministic components) was 

subtracted from the total signal to get a residual 

signal, which contains fault impulses. The residual 

signal was then pre-whitend to further aid the 

enhancement of the impulses by minimizing the 

variation between adjacent frequencies. The MED 

was then applied with the aim of removing the 

effect of the transfer path (deconvolution) and 

enhances the clarity of the impulses and then the 

detection and diagnoses of the bearing fault.  It is 
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shown that MED significantly increase the 

peakedness of the vibration signals and the clarity 

of the impulses. This has been illustrated in both the 

time domain signals and further observed on the 

envelope spectra. In particular, the modulations at 

the shaft speed in the case of inner race faults were 

dramatically enhanced and observed with the 

introduction of the MED technique. The selection 

of the filter length for the MED and the model order 

for pre-whitening are based on maximizing the 

kurtosis of the signal, which in effect means more 

clarity in the impulses and a better detection and 

analyses of the fault. It is observed that for pre-

whitening purposes a low model order is usually 

required to achieve a high kurtosis. For the MED 

filter, it is observed that the longer the filter the 

highest the kurtosis value (associated with a long 

tail). The variation between the kurtosis values 

above a filter length of 1024 samples is not 

dramatic, but the computational burden is. So a 

filter length between 1024 and 4096 samples would 

be suitable. Filters with length above 4096 samples 

will slightly increase the kurtosis, but will require a 

huge memory.  
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